Note on the Quantum Displacement of the Critical Point

T. S. Nilsen¹ and P. C. Hemmer¹

Received March 12, 1969

The quantum corrections to the law of corresponding states are studied by calculating the critical pressure, temperature, and density to first order in Planck's constant h on an exactly soluble model. The ratio of the critical parameters to the corresponding classical values are found to be $(p_c/p_c^0)^{1/2} = \rho_c/\rho_c^0 = T_c/T_c^0 = 1 - 0.67A$, with $A = h\rho_c^{1/3}(mkT_c)^{-1/2}$. The critical ratio is independent of h to first order. The results are compared with critical data for noble gases and hydrogen isotopes.

KEY WORDS: Critical point; Equation of state; Quantum effects; Corresponding states; Fluids.

1. INTRODUCTION

Assume that the intermolecular potential between each pair of particles in a fluid is of the form

$$\varphi(r) = \epsilon \psi(r/\sigma) \tag{1}$$

where ψ is a universal function, and σ (of dimension length) and ϵ are parameters varying from one substance to another. It is well-known prediction of *classical* statistical mechanics that all substances for which (1) holds have the same equation of state

$$p^* = p^*(\rho^*, T^*)$$
(2)

in terms of the reduced number density $\rho^* = \rho \sigma^3$, temperature $T^* = kT/\epsilon$, and pressure $p^* = p\sigma^3/\epsilon$. In particular the critical values ρ_c^* , p_c^* are universal.

Byk⁽¹⁾ suggested that quantum deviations from this principle of corresponding states occur, and proposed to use the dimensionless combination $h\rho_c^{1/3}(mkT_c)^{-1/2}$ as a measure of the quantum nature of a fluid. Experimental data⁽²⁾ on light fluids

¹ Institutt for Teoretisk Fysikk, Norges Tekniske Høgskole, Trondheim, Norway.

T. S. Nilsen and P. C. Hemmer

(inert gases and hydrogen isotopes) support Byk's suggestion; ρ_c^* , T_c^* , and p_c^{*-1} become systematically smaller with increasing values of the Byk combination. As emphasized by de Boer,⁽³⁾ the Byk parameter is not ideally suited for the study of quantum effects because the critical parameters ρ_c and T_c are themselves influenced by quantum phenomena.² A better choice for the quantum parameter is

$$\Lambda = h \rho_c^{0\frac{1}{2}} (mkT_c^{0})^{-1/2}$$
(3)

where the superscript ⁰ always denotes the corresponding *classical* value. Then Λ is exactly proportional to $m^{-1/2}$.

The purpose of this note is to present a model calculation of the functions $\rho_c^*(\Lambda)$, $T_c^*(\Lambda)$, and $p_c^*(\Lambda)$ to first order in Λ . We were inspired by a recent study⁽⁴⁾ of the critical properties of a one-dimensional model, *viz.*, hard rods with weak, long-range attraction. The one-dimensional model yielded results in qualitative agreement with experiments, but of course the three-dimensional version studied below is more relevant.

2. MODEL CALCULATION

The model is a quantum gas with an intermolecular potential consisting of a hard core of diameter d, plus a very weak long-range attraction $\varphi_a = \gamma^3 F(\gamma r)$. Lieb⁽⁵⁾ has proved that in the so-called van der Waals limit $\gamma \to 0$ the equation of state is given by

$$p = p_h - a\rho^2 \tag{4}$$

Here p_h is the pressure of quantum hard-sphere gas, and $a = -\frac{1}{2} \int \varphi_a(r) dr$ is the "integrated strength" of the attraction, a finite quantity in the van der Waals limit.

The equation of state of the quantum hard-core gas is known exactly in one dimension, but the first quantum correction to the classical equations of state of hard spheres was determined only very recently.⁽⁶⁾ The result is

$$p_{h}(\rho, T) = p_{h}^{0}(\rho, T) + \frac{3\lambda}{2\sqrt{2}d} \left(1 - \rho \frac{\partial}{\partial\rho}\right) p_{h}^{0}(\rho, T) + O\left(\frac{\lambda}{d}\right)^{2}$$
(5)

to first order in the ratio of the thermal de Broglie wavelength $\lambda = h(2\pi mkT)^{-1/2}$ to the diameter d of the hard core.

We now determine the influence of the quantum correction of Eq. (5) by considering it a perturbation upon the classical limit of Eq. (4), *viz.*,

$$p^{0} = p_{h}^{0} - a\rho^{2} \tag{6}$$

Using the fact that p_h^0/kT is a function $\chi(\rho)$ of the density only, we have in the immediate neighborhood of the critical point³

$$\Delta p = k\chi_c \,\Delta T + k\chi_c' \,\Delta T \,\Delta \rho + \frac{1}{2} k\chi_c'' \,\Delta T \,\Delta \rho^2 + \frac{1}{6} k T_c \chi_c''' \,\Delta \rho^3 \tag{7}$$

² We are grateful to Professor J. de Boer for a helpful comment on this point.

³ This expansion is possible since Eq. (6) is analytic at the critical point, a property almost certainly not shared by the equation of state of real fluids.

Fig. 1. The reduced critical temperature, density, and pressure for light fluids.⁽²⁾ The classical values have been determined by requiring the experimental curve (dashed line) to fit the data for xenon.

Here $\Delta p = p - p_c^0$, $\Delta T = T - T_c^0$, and $\Delta \rho = \rho - \rho_c^0$ measure the deviations from the *classical* critical point. Perturbation of this equation with the quantum correction of Eq. (5) yields the following critical displacements:

$$\Delta p_{e} = -p_{e}^{0} \frac{3\lambda}{\sqrt{2d}}$$

$$\Delta T_{e} = -T_{e}^{0} \frac{3\lambda}{2\sqrt{2d}}$$

$$\Delta \rho_{e} = -\rho_{e}^{0} \frac{3\lambda}{2\sqrt{2d}}$$
(8)

In terms of the parameter Λ this means that

$$\sqrt{p_c/p_c^{0}} = \rho_c/\rho_c^{0} = T_c/T_c^{0} = 1 - \frac{3}{4\sqrt{\pi}\,\rho_c^{0\frac{1}{3}}\,d}\,\Lambda\tag{9}$$

to first order in Λ . Numerically the classical critical density is $\rho_e^0 \simeq 0.25 d^{-3}$, so that the right-hand side of Eq. (9) equals $1 - 0.67 \Lambda$.

3. DISCUSSION

Equation (9) predicts that $\sqrt{p_c/p_c^0}$, ρ_c/ρ_c^0 , and T_c/T_c^0 decrease with Λ , to first order *linearly* and *in the same way*. Figure 1 shows that the experimental data are in qualitative agreement with this theoretical prediction. However, the slope of the theoretical curve is too steep, and the data favor a coefficient of Λ closer to -0.35.

⁴ To obtain this value we need the classical equation of state for hard spheres. Up to the critical density both the seventh-term virial expansion and the Percus-Yevick equation are excellent representations of the hard-sphere pressure, and both yield the quoted result. The exact Percus-Yevick value is $\rho_e = (\sqrt{73} - 7)/2\pi d^3$.

The one-dimensional version of the model yields $1 - 0.42\Lambda + O(\Lambda^2)$ for the ratios (9). We must conclude, therefore, that the very good agreement obtained by Burke *et al.*⁽⁴⁾ with the one-dimensional model is accidental.

Furthermore, from the basic result given in Eq. (9) follows that the critical ratio $\kappa_c = p_c/\rho_c k T_c$ has no first-order dependence upon Λ ,

$$\kappa_c = \kappa_c^{\ 0} + O(\Lambda^2) \tag{10}$$

This may be taken as an encouraging result since the experimental values of κ are almost constant (κ increases only 5% from Xe to He³).

As a final point, note that the quantum displacements discussed above imply *isotopic* shifts, each isotope having its own distinct critical point. (In addition, of course, the interactions between the various isotope species will differ slightly from one another.) For Xe, which displays a range of isotopes from Xe¹²⁴ at 0.1% abundance to Xe¹³⁶ at 9% abundance, Eq. (9) predicts a shift of the critical temperature equal to 0.03° per atomic weight unit, a large effect compared with present-day measuring accuracy.

REFERENCES

- 1. A. Byk, Ann. Phys. 66:157 (1921); 69:161 (1922).
- 2. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids*, John Wiley, New York (1954); J. M. Levelt, Thesis, Amsterdam (1958).
- 3. J. de Boer and A. Michels, Physica 5:945 (1938); J. de Boer, Physica 14:139 (1948).
- 4. T. Burke, J. L. Lebowitz, and E. Lieb, Phys. Rev. 149:118 (1966).
- 5. E. Lieb, J. Math. Phys. 7:1016 (1966).
- 6. B. Jancovici (to be published); B. Kumar, Thesis, Imperial College (unpublished) (1968); P. C. Hemmer, *Phys. Lett.* 27A: 377 (1968).